Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract A series of data samples was collected with the Belle II detector at the SuperKEKB collider from March 2019 to June 2022. We determine the integrated luminosities of these data samples using three distinct methodologies involving Bhabha (), digamma (), and dimuon () events. The total integrated luminosity obtained with Bhabha, digamma, and dimuon events is (426.88 ± 0.03 ± 2.61) fb−1, (429.28 ± 0.03 ± 2.62) fb−1, and (423.99 ± 0.04 ± 3.83) fb−1, where the first uncertainties are statistical and the second are systematic. The resulting total integrated luminosity obtained from the combination of the three methods is (427.87 ± 2.01) fb−1.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            We report measurements of time-dependent asymmetries in decays based on a data sample of events collected at the resonance with the Belle II detector. The Belle II experiment operates at the SuperKEKB asymmetric-energy collider. We measure decay-time distributions to determine -violating parameters and . We determine these parameters for two ranges of invariant mass: , which is dominated by decays, and a complementary region . Our results have improved precision as compared to previous measurements and are consistent with theory predictions. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            We describe a measurement of charge-parity ( ) violation asymmetries in decays using Belle II data. We consider and decays. The data were collected at the SuperKEKB asymmetric-energy collider between the years 2019 and 2022, and contain bottom-antibottom meson pairs. We reconstruct signal decays and extract the violating parameters from a fit to the distribution of the proper-decay-time difference between the two mesons. The measured direct and mixing-induced asymmetries are and , respectively, where the first uncertainties are statistical and the second are systematic. These results are in agreement with current world averages and standard model predictions. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            The ratio of branching fractions , where is an electron or muon, is measured using a Belle II data sample with an integrated luminosity of at the SuperKEKB asymmetric-energy collider. Data is collected at the resonance, and one meson in the decay is fully reconstructed in hadronic decay modes. The accompanying signal meson is reconstructed as using leptonic decays. The normalization decay, , produces the same observable final-state particles. The ratio of branching fractions is extracted in a simultaneous fit to two signal-discriminating variables in both channels and yields . This result is consistent with the current world average and with Standard Model predictions. Published by the American Physical Society2024more » « less
- 
            A<sc>bstract</sc> We report measurements of thee+e−→$$ B\overline{B} $$ ,$$ B{\overline{B}}^{\ast } $$ , and$$ {B}^{\ast }{\overline{B}}^{\ast } $$ cross sections at four energies, 10653, 10701, 10746 and 10805 MeV, using data collected by the Belle II experiment. We reconstruct oneBmeson in a large number of hadronic final states and use its momentum to identify the production process. In the first 2 – 5 MeV above$$ {B}^{\ast }{\overline{B}}^{\ast } $$ threshold, thee+e−→$$ {B}^{\ast }{\overline{B}}^{\ast } $$ cross section increases rapidly. This may indicate the presence of a pole close to the threshold.more » « less
- 
            A<sc>bstract</sc> We present the result of a search for the charged-lepton-flavor violating decayτ−→μ−μ+μ−using a 424 fb−1sample of data recorded by the Belle II experiment at the SuperKEKBe+e−collider. The selection ofe+e−→τ+τ−events is based on an inclusive reconstruction of the non-signal tau decay, and on a boosted decision tree to suppress background. We observe one signal candidate, which is compatible with the expectation from background processes. We set a 90% confidence level upper limit of 1.9×10−8on the branching fraction of theτ−→ μ−μ+μ−decay, which is the most stringent bound to date.more » « less
- 
            A<sc>bstract</sc> We present a measurement of the ratio$$ {R}_{\mu }=\mathcal{B}\left({\tau}^{-}\to {\mu}^{-}{\overline{\nu}}_{\mu }{\nu}_{\tau}\right)/\mathcal{B}\left({\tau}^{-}\to {e}^{-}{\overline{\nu}}_e{\nu}_{\tau}\right) $$ of branching fractions$$ \mathcal{B} $$ of theτlepton decaying to muons or electrons using data collected with the Belle II detector at the SuperKEKBe+e−collider. The sample has an integrated luminosity of 362 ± 2 fb−1at a centre-of-mass energy of 10.58 GeV. Using an optimised event selection, a binned maximum likelihood fit is performed using the momentum spectra of the electron and muon candidates. The result,Rμ= 0.9675 ± 0.0007 ± 0.0036, where the first uncertainty is statistical and the second is systematic, is the most precise to date. It provides a stringent test of the light-lepton universality, translating to a ratio of the couplings of the muon and electron to theWboson inτdecays of 0.9974 ± 0.0019, in agreement with the standard model expectation of unity.more » « less
- 
            We present GFlaT, a new algorithm that uses a graph-neural-network to determine the flavor of neutral mesons produced in decays. It improves previous algorithms by using the information from all charged final-state particles and the relations between them. We evaluate its performance using decays to flavor-specific hadronic final states reconstructed in a sample of electron-positron collisions collected at the resonance with the Belle II detector at the SuperKEKB collider. We achieve an effective tagging efficiency of , where the first uncertainty is statistical and the second systematic, which is 18% better than the previous Belle II algorithm. Demonstrating the algorithm, we use decays to measure the mixing-induced and direct violation parameters, and . Published by the American Physical Society2024more » « less
- 
            A<sc>bstract</sc> We present an analysis of the processe+e−→π+π−Υ(nS) (wheren= 1, 2, or 3) reconstructed in 19.6 fb−1of Belle II data during a special run of the SuperKEKB collider at four energy points near the peak of the Υ(10753) resonance. By analyzing the mass distribution of theπ+π−Υ(nS) system and the Born cross sections of thee+e−→π+π−Υ(nS) process, we report the first observation of Υ(10753) decays to theπ+π−Υ(1S) andπ+π−Υ(2S) final states, and find no evidence for decays toπ+π−Υ(3S). Possible intermediate states in theπ+π−Υ(1S,2S) transitions are also investigated, and no evidence for decays proceeding via the$$ {\pi}^{\mp }{Z}_b^{\pm } $$ orf0(980)Υ(nS) intermediate states is found. We measure Born cross sections for thee+e−→π+π−Υ(nS) process that, combined with results from Belle, obtain the mass and width of Υ(10753) to be (10756.6 ± 2.7 ± 0.9) MeV/c2and (29.0 ± 8.8 ± 1.2) MeV, respectively. The relative ratios of the Born cross sections at the Υ(10753) resonance peak are also reported for the first time.more » « less
- 
            We measure the branching fraction of the decay using data collected with the Belle II detector. The data contain 387 million pairs produced in collisions at the resonance. We reconstruct decays from an analysis of the distributions of the energy and the helicity angle. We determine the branching fraction to be , in agreement with previous results. Our measurement improves the relative precision of the world average by more than a factor of two. Published by the American Physical Society2024more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
